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Abstract

A main aspect of underwater passive navigation is how to identify the vehicle location on an existing gravity map, and several match-
ing algorithms as ICCP and SITAN are the most prevalent methods that many scholars are using. In this paper, a novel algorithm that is
different from matching algorithms for passive navigation is developed. The algorithm implements underwater passive navigation by
directly estimating the inertial errors through Kalman filter algorithm, and the key part of this implementation is a Fourier series-based
local geopotential model. Firstly, the principle of local geopotential model based on Fourier series is introduced in this paper, thus the
discrete gravity anomalies data can be expressed analytically with respect to geographic coordinates to establish the observation equation
required in the application of Kalman filter. Whereafter, the indicated gravity anomalies can be gotten by substituting the inertial posi-
tions to existing gravity anomalies map. Finally, the classical extended Kalman filter is introduced with the differences between measured
gravity and indicated gravity used as observations to optimally estimate the errors of the inertial navigation system (INS). This naviga-
tion algorithm is tested on simulated data with encouraging results. Although this algorithm is developed for underwater navigation
using gravity data, it is equally applicable to other domains, for example vehicle navigation on magnetic or terrain data.
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1. Introduction

Vehicle’s underwater passive navigation is an area of
research with broad commercial and military application.
Recently, there has been greater interest in using geophys-
ical maps (for example gravity) for underwater navigation
[1,2], and the main methods that used in map-based naviga-
tion are several matching algorithms. These matching algo-
rithms, as Iterative Closest Contour Point (ICCP) and
Sandia Inertial Terrain-Aided Navigation (SITAN) algo-
rithm, can bound errors inherent in traditional navigation
systems based on dead-reckoning or inertial navigation to

a certain extent. ICCP algorithm is a sequence iterative
matching algorithm [3–5]; it can give a matching path to
correct the indicated path of INS only after getting enough
samples, which makes its real-time quality not very good.
SITAN algorithm uses a bank of Kalman filters to search
the matching position based on information from these
Kalman filters recursively [6]. So SITAN is a real-time
matching algorithm, but it also wastes a lot of time in the
searching procedure and sometimes it gets missed position
fixes because of searching points’ large quantity.

In this paper, we present an algorithm that is different
from matching algorithms for passive navigation. As we
all know, vehicle’s inertial navigation errors will increase
with time going on, and that’s why we must make routine
adjustment to them. For GPS/INS integrated navigation,
with the difference of GPS and INS positions or speeds used
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as observations, the INS errors can be optimally estimated
through Kalman filtering algorithm to bound the increasing
errors. However, for the gravity passive navigation, the
available measurements are gravity data only, in this case
if some observation equations that contain inertial naviga-
tion errors can be obtained, then through Kalman filtering
algorithm, the INS errors can also be estimated, and this
is the key idea of our algorithm introduced in this paper.
To implement this idea we introduced a local geopotential
model, and the use of this model in gravity passive naviga-
tion will illustrate in full in the following parts of this paper.

2. Principle of gravity passive navigation

The configuration of our passive navigation algorithm is
shown in Fig. 1. As indicated, the marine gravimeter pro-
vides the measured gravity anomalies that sampled at the
vehicle’s actual position. Then we find those we name indi-
cated gravity anomalies on map according to INS indicated
positions. Subtracting this indicated gravity anomalies
from the measured gravity anomalies the observations con-
taining INS position errors are achieved. The local geopo-
tential model is a key part of our algorithm, through which
gravity data can be expressed as an analytical equation,
and this operation is indispensable to Kalman filtering
algorithm to be used as an observation equation. At the
existence of observation equation, and with the INS error
equations used as state equations, the unknown INS posi-
tion errors can be estimated eventually on extended Kal-
man filter algorithm, and thus correct.

There is an issue we must remind the reader, as the mea-
sured gravity data are measured at a level surface underwa-
ter which is different from the sea surface of gravity map
data, in this case a reduction operation [7,8] should be
applied to these measured gravity to put them to the same
level surface with gravity map. See Refs. [7,8] for the details
of reduction operation.

3. The Fourier series-based local geopotential model

To estimate the INS errors on differences between mea-
sured and indicated gravity anomalies, it will depend heav-
ily on the analytical relationship between the gravity data

and their geographic coordinates, namely the confirmation
of geopotential model. Nowadays, most of the popular glo-
bal geopotential models [9] have reached a high-lever in
exponent, and are playing a dominant role in analytically
characterizing gravity data. However, these global gravity
field models, in essence, are one kind of harmonic analysis
under a spherical coordinates system. Due to those compli-
cated Legendre functions with double indexes, when geo-
potential models with a higher resolution are expected,
one faces two-sided difficulties that is the complexity of cal-
culating large quantity Legendre functions and the uncer-
tainty of midband potential coefficients.

Recently, Fast Fourier Transform (FFT) has been
extensively investigated by numerous physical geodesists
to establish gravity field models for its fast computational
speed [10–15]. What the authors feel pity for is that the
FFT in physical geodesy is only a discrete form and this
makes the models formed by it not suitable for applying
in our paper. The gravity field model we use should be
an analytical expression like global geopotential model,
and at the same time need not to calculate a large number
of complex Legendre functions; to fill these two qualifica-
tions we consider local geopotential model [16] to be a
good choice. With this model the gravity data can be
expressed by a continuous Fourier series, and any point
of the earth’s gravity can be computed once these Fourier
coefficients are determined.

3.1. Fourier series expression of local geopotential model

According to [16], the disturbing potential T can be
expressed as

T ðx; y; zÞ ¼ 1

2p

Z Z
Dgðx0; y0Þdx0 dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0 � xÞ2 þ ðy0 � yÞ2 þ z2

q ð1Þ

Starting from a Laplace’s equation in a rectangular coordi-
nates system and making use of a separation variable meth-
od, the general solution of Eq. (1) reads

T ðx;y;zÞ¼
XX

expð�z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2w2þm2l2
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Fig. 1. Sketch of gravity passive navigation algorithm.
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where w, l are circle frequencies, n, m are random non-neg-
ative integers, Anm;Bnm;Cnm;Dnm are undetermined coeffi-
cients. Dgðx; yÞ is gravity anomaly on sea surface, and
x0; y0 are integration variables.

Assume that gravity anomalies are distributed on the
area r 2 ½�N < x < N ; �M < y < M � and have been
expanded as a two-dimensional Fourier series:

oT
oz
jz¼0 � Dgðx; yÞ ¼

XX
ðcos nwx; sin nwxÞ

�
anm bnm

cnm dnm

� �
�

cos mly

sin mly

� � ð3Þ

From Eqs. (2) and (3), the following equation can be de-
duced subsequently:

Anm Bnm

Cnm Dnm

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2w2 þ m2l2
p anm bnm

cnm dnm

� �
ð4Þ

where anm, bnm, cnm, dnm are the Fourier coefficients. Accord-
ing to a two-dimensional Fourier expansion theorem, Eq.
(4) holds
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Once the Fourier coefficients are known, inserting Eq. (5)
into Eq. (3), the analytical expression of gravity anomaly
with respect to latitude and longitude coordinates can be
derived. However, there is one issue in this model. That
is when we expand gravity anomalies Dg as a two-dimen-
sional Fourier series, gravity anomalies have actually been
considered as a periodical function with periodic continu-
ation. This will introduce an additional error of periodical
continuation. To significantly reduce this kind of error,
the zero padding has been proven as a very effective tool,
and when different rate of zero padding (for example,
50%) is adopted, the accuracy of the final result will also
be varied. See Ref. [17] for discussion of the effectiveness
of the zero padding.

3.2. Numerical analysis of the local geopotential model

According to the theoretical analysis mentioned above,
the local geopotential model is one Fourier fitting method
in essence. And the fitting accuracy of gravity data to lati-
tude and longitude coordinates directly determines whether
it can be applied in passive navigation or not. Once the
model accuracy meets our expectation, and considering
its analytical expression, then it can be applied in vehicle
underwater passive navigation.

To verify the accuracy of this local geopotential model,
a numerical computation is carried out on one test area
with typical matchable quality. The test area consists of
117 � 77 gravity anomalies data with a resolution of
20 � 20. The maximum of map data is 180.4364 mGal and
the minimum is �235.1216 mGal.

The left panel in Fig. 2 shows contour map of the fitting
gravity anomalies by local geopotential model with 50% zero
padding. The right panel in Fig. 2 gives the original gravity
anomalies. Comparing the fitting gravity anomalies with
the original data, we can see that the fitting contours are
almost similar to the original ones. Fig. 3 shows the differ-
ence between fitting gravity anomalies and the original data,
from which we see the high similarity of them. However,
there is one problem we must face, that is the ‘‘marginal
effect”. Fig. 3(a) shows that ‘‘marginal effect” means fitting
errors are large in the margin of the map, and we can see from
Fig. 3(a) how serious this effect is, for these numerical values
are far from zero. From Fig. 3(b) we can find that the large
error points exist only in the margin area of the map (which
is very small). So we can discard this error area after applying
the model to passive navigation.

Table 1 shows the error statistics of the fitting gravity
anomalies and these statistical data are obtained without
considering the influence of marginal data, where Dgm

stands for the gravity anomalies on gravity map, Dgf

stands for the fitting gravity anomalies.
From Table 1, one can see that the average error of local

geopotential model is 0.1331 mGal only. These results
agree with what we expected in the preceding sections,
and indicate that with its high degree of accuracy and ana-
lytical expression, the local geopotential model is quite
adaptive for underwater passive navigation to generate
an observation equation.

4. Errors estimation for inertial navigation

4.1. State model

The passive navigation algorithm in this paper utilizes the
differences between measured gravity anomalies and indi-
cated gravity anomalies as observations according to Eq.
(3), and these observations are nonlinear in their analytical
expression. In this case, an extended Kalman filter will be
used to process them for their nonlinear expression, since
the extended Kalman filter [18,19] is the most popular
approach to nonlinear estimation.

The navigation error propagation model in [20] is intro-
duced in this section. The navigation equation is

d _X ðtÞ ¼ F ðtÞ � dX ðtÞ þ GðkÞ � W ðtÞ ð8Þ

in which

dX ðtÞ ¼ ½dV x; dV y ; dui; dki;/x;/y ;/z; dAxc; dAyc; exc; eyc; ezc�T

stands for the deviation between actual quantities and INS-
indicated values relative to the earth centered/earth fixed
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frame. W ðtÞ ¼ ½dAxs; dAys; exs; eys; ezs� is zero-mean, white sys-
tem noise vector; F(t), the system matrix; G(k), the system

control matrix; dV x and dV y denote the velocity errors of
inertial instrument in latitude and longitude; Dui and Dki

are the vehicle position errors; /x;/y ;/z the roll error,
pitch error and heading error, respectively; dAxc; dAyc are
accelerometer constant zero-bias in east and north orienta-
tions; exc; eyc; ezc are gyro constant zero-bias in east, north
and azimuth orientation; dAxs; dAys, the accelerometer ran-

Fig. 3. Fitting errors of gravity anomalies with 50% zero padding. (a) Considering the marginal effect; (b) without considering the marginal effect.

Fig. 2. The fitting and original gravity anomalies. (a) The fitting gravity anomalies; (b) the actual gravity anomalies.

Table 1
Error statistics of local geopotential model (mGal)

Items Maximum Minimum Mean MSE

jDgm � Dgf j 1.2565 5.0974e�006 0.1331 0.1474
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dom zero-bias in east and north orientations; exs; eys; ezs are
gyro random zero-bias in east, north and azimuth orienta-
tions. These variables mentioned above are detailed in [20]
or in many standard textbooks on inertial navigation sys-
tem. Note that the navigation equation is continuous,
and a discretization transform should be taken to it, since
the extended Kalman filter is only a discrete recursive esti-
mator. Also see [20] for this discretization transform.

The discrete-time navigation equation takes the follow-
ing form:

d _X kþ1 ¼ F k � dX k þ Gk � W k; k ¼ 1; . . . ;N ð9Þ
where N is the number of samples.

4.2. Observation model

The observable equation is expressed as

h ¼ Dgðut; ktÞ � Dgðui; kiÞ ð10Þ
where Dgðut; ktÞ is the measured gravity anomaly at the ac-
tual vehicle position ðut; ktÞ and Dgðui; kiÞ is the gravity
anomaly from the map at the indicated position ðui; kiÞ:
Since the equation of h with respect to INS position error
is nonlinear, a linear approximation is used in modeling
this observable as follows:

h ffi ½oDgðu; kÞ=ouju¼ui
� � Dui þ ½oDgðu; kÞ=okjk¼ki

�
� Dki þ n

¼ Dguju¼ui
� Dui þ Dgkjk¼ki

� Dki þ n ð11Þ

where Dui and Dki are the inertial position error estimates,
and n represents the errors for the measurement and map
data. The localized gravity anomaly function Dgðu; kÞ is
determined by applying the local geopotential model to dis-
crete gravity anomaly map values in the vicinity of u and k.
According to Eq. (3) we have

Dguju¼ui
¼ nu �

XX
ð� sin nudðuiÞ; cos nudðuiÞÞ

�
anm bnm

cnm dnm

� �
�

cos mvdðkiÞ
sin mvdðkiÞ

� �

Dgkjk¼ki
¼ mv �

XX
ðcos nudðuiÞ; sin nudðuiÞÞ

�
anm bnm

cnm dnm

� �
�
� sin mvdðkiÞ
cos mvdðkiÞ

� �

Then we have the discrete-time observation equation

hk �

zerosð2; 1Þ
Dguju¼ui

Dgkjk¼ki

zerosð8; 1Þ

2
6664

3
7775

T

� dX k þ nk ¼ H k � dX k þ nk ð12Þ

where Hk is the discrete-time linearized observation matrix,
nk is the discrete-time measurement noise, zerosðn;mÞ
2 Rn � Rm stands for zero matrix. By now, the INS position
errors can be estimated on navigation equation Eq. (9) and
observation equation Eq. (12) through the extended Kal-
man filter.

5. Simulation

In this section, we apply the local geopotential model
to underwater passive navigation to estimate the INS
errors. Simulation is done on the test area in Section
3.2, the initial position of vehicle is ð21:1�; 122:0�Þ with
position error of 2 nmile, the characters of inertial instru-
ment are as shown in Table 2.

The initial angular errors are /x0
¼ 1 deg, /y0

¼ 1 deg
and /z0

¼ 3 deg. Before measurements are taken, we
assume the initial state vector Xð0Þ ¼ zeroð12; 1Þ. Nowa-
days, the dynamic accuracy of marine gravimeter has
reached the level of 1 mGal. Moreover, considering the
synthetical influence of cross-coupling and Eötvös effect,
we assume the noise of gravimeter to be 9 mGal2. The
results of simulation are shown in Figs. 4–6.

Fig. 4 shows the 8-h passive navigation results. The
estimated path on gravity anomalies data is curve 3
which consists of 80 samples with a sample interval
0.1 h. The curve 2 is the actual path, while the indicated
path is curve 1. The actual path is generated by perturb-
ing the indicated path (obtained from dead-reckoning)
with fixing errors. In Fig. 4 we can see that the estimated
path matches well with the actual track, which demon-
strates the effectiveness of passive navigation algorithm
developed in our paper.

Fig. 5 shows the estimation of INS position errors in lat-
itude (Fig. 5(a)) and longitude (Fig. 5(b)), from which we
can see that the INS position errors can be estimated per-
fectly with the local geopotential model used as observa-
tion equation. And this result also indicates that it is
feasible to extract the position errors contained in differ-
ences between measured and indicated gravity anomalies.

Table 2
Characters of inertial instrument

Items Accelerometers (g) Gyros (�/h)

Constant bias 1 � 10�4 0.1
Random bias 5 � 10�5 0.1

Fig. 4. Simulation result of passive navigation. Curves 1, 2, and 3
represent the indicated path, actual path and estimated path, respectively.
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Fig. 6, which shows the positional errors of passive naviga-
tion in latitude (Fig. 6(a)) and longitude (Fig. 6(b)), dem-
onstrates that the gravity passive navigation can bound
the latitude and longitude errors, so reduces these errors
growth.

Table 3 is the error statistics, from which we can see the
accuracy of the gravity passive navigation.

6. Summary

Underwater gravity passive navigation is an area of
research with broad commercial and military applications
for it provides accurate navigation without reliance on
GPS. The implementation of Kalman filter in gravity passive
navigation requires modeling for the gravity observation. In
this case a local geopotential model is introduced in our
paper to implement this operation. According to our algo-
rithm for passive navigation, the INS errors can be estimated
directly without the use of any matching algorithms. The
theoretical formulation and numerical investigation in the
paper give us an insight that the local geopotential gravity
field model has high resolution, and the results of simulation
also demonstrate its effectiveness in underwater passive nav-
igation. We believe, with the improvement in marine gravity
data resolution the accuracy of this local geopotential model
will increase, and the performances of gravity passive navi-
gation can be better improved.

Acknowledgement

This work was supported by National Natural Science
Foundation of China (Grant Nos. 40125013 and 40644020).

References

[1] Rice H, Mendelsohn L, Aarons R, et al. Next generation marine
precision navigation system. In: Proceedings of IEEE position
location and navigation symposium, New York, USA, March 13–16;
2000. p. 13–6.

[2] Moryl J, Rice H, Shinners S. The universal gravity module for
enhanced submarine navigation. In: Proceedings of IEEE position
location and navigation symposium, New York, USA, April 20–23;
1998. p. 20–3.

[3] Behzad KP, Behrooz KP. Vehicle location on gravity maps. In:
Proceedings of SPIE – the international society for optical
engineering, Orlando, USA, April; 1999. p. 182–91.

[4] Besl PJ, McKay ND. A method for registration of 3D shapes. IEEE
Trans Pattern Anal Mach Intell 1992;14:239–56.

[5] Kamgar-Parsi B. Matching sets of 3D line segments with application
to polygonal arc matching. IEEE Trans Pattern Anal Mach Intell
1997;19:1090–9.

[6] Hollowell J. HELI/SITAN: a terrain referenced navigation algorithm
for helicopters. In: Proceedings of IEEE position, location, and
navigation symposium 1990 (PLANS’90), Las Vegas, NV, USA,
March 20–23; 1990. p. 616–25.

[7] Bian SF, Zhang CJ. Computation of topographic effects on vertical
gravity gradient. Comput Tech Geophys Geochem Exploration
1999;21(2):133–40.

[8] Bian SF. Some cubature formulas for singular integrals in physical
geodesy. J Geodesy 1997;71:443–53.

[9] Heiskanen WA, Morits H. Physical geodesy. 1st ed. San Francisco:
W.H. Freeman and Company; 1980, p. 86–93.

[10] Harrison J, Dichison M. Fourier transform and its application in
local gravity modeling. Bull Geod 1989;63:149–66.

[11] Harrison J, Dichison M. The Fourier methods in local gravity
modelling. Bull Geod 1989;63:149–66.

[12] Bracewell RN. The Fourier Transform and its applications. 2nd
ed. New York: McGraw Hill; 1986, p. 58–73.

[13] Brigham EO. The Fast Fourier Transform and its application. 1st
ed. New Jersey: Prentice Hall, Englewood Cliffs; 1988, p. 67–75.

Fig. 5. Estimation of INS position error. (a) Curve 1 represents error
estimation with passive navigation in latitude, and curve 2 represents
actual error of INS in latitude; (b) curve 1 represents error estimation with
passive navigation in longitude, and curve 2 represents actual error of INS
in longitude.

Fig. 6. Positional error of passive navigation. (a) Curve 1 represents
positional error of passive navigation in latitude; curve 2 represents
positional error of INS in latitude; (b) curve 1 represents positional error
of passive navigation in longitude; curve 2 represents positional error of
INS in longitude.

Table 3
Positional error statistics of gravity passive navigation (nmile)

Items Maximum Minimum Mean MSE

Error in latitude 1.9440 0.0022 0.2499 0.3304
Error in longitude 1.9653 0.0006 0.1975 0.2964

1144 Z. Wang, S. Bian / Progress in Natural Science 18 (2008) 1139–1145



[14] Schwarz KP, Sideris GGM, Forsberg R. The use of FFT techniques
in physical geodesy. Geophys J Int 1990;100(6):485–514.

[15] Li JC, Ning JS, Chao DB. Several problems in the application of
satellite altimetry in physical geodesy. J Wuhan Tech Univ
1996;21(1):9–13, [in Chinese].

[16] Joachim M, Bian SF. Implementing the Fourier series as a
local geopotential model in the local gravity field modeling.
Anno Lvii-Bollettino Di Geodesia E Scienze Affini
1998;3:293–305.

[17] Tziavos. Comparisons of spectral techniques for geoid computations
over large scale. J Geodesy 1996;70:357–73.

[18] Yang YX. Adaptive navigation and kinematic positioning. 1st
ed. Beijing: Press of Surveying and Mapping; 2006, p. 45–51 [in
Chinese].

[19] Jazwinski AH. Stochastic processes and filtering theory. 1st ed. New
York: Academic Press; 1970, p. 36–44.

[20] Farrell JA, Barth M. The global positioning system and inertial
navigation. 2nd ed. New York: McGraw-Hill; 1999, p. 123–42.

Z. Wang, S. Bian / Progress in Natural Science 18 (2008) 1139–1145 1145


